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TURBULENT BOUNDARY LAYER OF POLYMER SOLUTIONS WITH 

A FLOW-RETARDING PRESSURE GRADIENT 

V. S. Belokon' and V. A. Gorodtsov UDC 532.135 

A description of the mean velocity distribution in the near-wall turbulent bound- 
ary layer of polymer solutions with a flow-retarding pressure gradient is given 
by using dimensional analysis and similarity. 

Certain Peculiarities of Turbulent Boundary Layer Similarity 

As is known [i] mean velocity distribution and drag law for turbulent flows is described 
with satisfactory accuracy by using dimensional analysis and similarity without detailing 
the turbulent model. The main reason for such simplicity is associated with the separation 
of the shear turbulent flow in a domain with substantially different scales, which are autono- 
mous to a considerable degree and allows local description. 

There are two characteristic length scales in the boundary layer on a smooth plate 
around which a viscous fluid flows with the constant velocity U: the boundary layer thick- 
ness 6 and the "viscous sublayer thickness" scale 6v - v/u, between which there exists the 
inequality 6 >> 6v for a high degree of development of the turbulence. Using the lowest ap- 
proximation for juncture of the asymptotic expansions in the small parameter 6~/6, a loga- 
rithmic formula for the mean velocity is derived successfully [i]. The derivation relies on 
the assumption of locality. It is considered that for a given x (x is the coordinate along 
the surface in the flow direction) the mean characteristics depend on 6(x) and u,(x) and are 
independent of their derivatives. 

In the case of a boundary layer with a significant pressure gradient ~ - dp/dx, a third 
2 length scale 6~ - u~/~ becomes important (we neglect compressibility of the fluid and con- 

sider the density equal to one). It characterizes the length within which the friction stress 
2 on the streamlined surface u,(x) varies substantially. Then the assumption of locality also 

implies slowness of the change in the velocity U(x). Taking into account the steady flow 
equation a(x) = --U(x)dU(x)/dx, the constraint on the derivative dU/dx can be given the form 
~ << U 2. 

A n o t h e r  i m p o r t a n t  h y p o t h e s i s  i s  t h e  a s s u m p t i o n  o f  autonomy of  c e r t a i n  subdomains  of  t he  
boundary layer. It results in the possibility of an independent analysis of the mean char- 
acteristics in these subdomains. 

The autonomy condition actually reduces to similarity in the Ryenolds number U6/~ >> 1 
for the outer flow zone;viscosity plays no part here. The assumption of autonomy in the 
inner subdomain (close to the surface being streamlined) denotes independence of the dis- 
tribution from the external parameters U, 6, e. This can be expected when the inner and out- 
er scales are not commensurate, at least the length (6~ << ~),the time (v/u$ << 6/U), and 
the smallness of the change in the stress change u~ in the "viscous" length (~/u~ << u~2). 
This latter assumption can be given the form of the condition 6v << 6~. 

For a sufficiently strong pressure gradient, its influence will penetrate deeply, and 
6~ << 6, as will also be taken into account later. If the time scales associated with the 

2 
effect of viscosity, the pressure gradient, and the external flow ~/u, << u,/e << 6/U are 
also incommensurate, then the existence of an autonomous intermediate pressure subdomain can 
also be expected. Together with those considered earlier, these conditions result in the 
requirement u,U << ~ << U 2, which imposes strong constraints on the possibility of an autono- 
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mous description of the pressure subdomain. This is apparently why no complete similarity 
is detected in the measurements performed, and some refinement is required [2, 3]. Never- 
theless, the locality and autonomy conditions are assumed satisfied in a further simplified 

consideration. 

Multiscale Boundary Layer Analysis of Polymer Solutions 

Still another dimensional parameter characterizing the solution should be taken into 
account in describing the turbulent flows of solutions manifesting a drag reduction effect. 
We use the solution relaxation time 0 as such a parameter (the case of the length dimension- 
ality parameter can be examined analogously [4]). Moreover, a certain dimensionless param- 
eter ~, for instance the polymer concentration, should be taken into account. T 

The length scale 60 - 0u, characterizing the size of the domain of inertial-elastic 
influence of the polymer on the turbulence can exceed the viscous 60 >> 6~ if the effect 
is strong. The scale (v0) I~ characterizing the size of the viscous-elastic influence of the 
polymer is less substantial since it depends on the viscosity and has an intermediate value 

(6~ << (~0)I~ << 60). 

In conformity with the assumption on locality, the distribution of mean characteristics 
in a fixed boundary layer section x can depend on the governing parameters u~(x), 6(x), ~(x), 
v, 0, ~. It would seem that the quantity U(x) should also be included here as a character- 
istic of the external zone. However, the flow in this zone is independent of the viscosity, 
and in the ideal fluid approximat,ion:the absolute value of the velocity should not be sub- 
stantial (see [i], also). Nevertheless, U can be in the final results when conditions on the 
outer boundary are taken into account. 

If the influence of the pressure gradient does not occupy the inertial-elastic zone com- 
pletely, i.e., the change in stress u~ can be neglected within its limits, then 6~ >> 60, 
and in conformity with the previous inequalities, we have the following relationship between 
the scales 

Let us assume that such inequalities are satisfied and autonomous boundary-layer sub- 
domains exist for whose description one of these characteristic length scales is sufficient. 
Let us examine these subdomains further. 

The mean velocity gradient d < u > dy can depend on just the coordinate y and the di- 
mensional parameters 6, ~ for y >> 6~ in the outer part of the boundary layer, so that 

a<.> _ ~ h  T ' y>>6~. (2) 
dy I' y , 

By using integration and application of the condition on the outer boundary (<u> = U 
for y = 6), this formula can be given the form of a "velocity defect law" 

v 

F o r  t h e  c a s e  o f  a s t r e a m l i n i n g  f l o w  a t  a c o n s t a n t  v e l o c i t y ,  v = u , ,  w h i l e  f o r  a b o u n d a r y  l a y e r  
w i t h  a l a r g e  p r e s s u r e  g r a d i e n t  v = ~ >> u , .  

I n  t h e  n e x t  a u t o n o m o u s  s u b d o m a i n  6 >> y >> 6 0 ,  t h e  s t a t i s t i c a l  f l o w  c h a r a c t e r i s t i c s  c a n  
d e p e n d  o n  y ,  c~, 8 a ( o r  y ,  c~, u , ) ,  a n d  p a r t i c u l a r l y  

-r d<u3 ~ f2 , a >> g >> a0. (4) 
dy Y 

The properties of the polymer solution become important in the domain 6~ >> y >> 6v and 
mean velocity gradient can depend on y, u,, 60, ~ (or y, u,, 0, ~): 

_ , ~ , 6~>>y>>6, (5) 
dg y 

TThe relaxation time can vary independently of the concentration changing the temperature of 
the solut ion. 
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Near a smooth surface the governing parameters for y << ~e will be y, u,, 5v, n (or y, 
u,, ~, ~). Then 

d<u~ _ u, f~( g ) 
dg y --5~- ' ~ ' 5~ y" (6)  

I n  t h e s e  f o r m u l a s  t h e  f ~ ,  f i ,  f 3 ,  f 4 ,  F a r e  u n i v e r s a l  d i m e n s i o n l e s s  f u n c t i o n s  o f  t h e i r  
d i m e n s i o n l e s s  a r g u m e n t s .  

L e t  us a s sume  t h a t  t h r e e  o v e r l a p p i n g  domains  e x i s t  b e t w e e n  t h e  f o u r  z o n e s  m e n t i o n e d  
6a << y << 5, a 0 << y << 5a ,  6~ << y << 50,  i n  w h i c h  t h e  a p p r o p r i a t e  p a i r s  o f  f o r m u l a s  a r e  
s i m u l t a n e o u s l y  v a l i d .  Then t h e  fo rm o f  t h e  f u n c t i o n s  f ~ ,  f i ,  f 3 ,  f4 i s  d e t e r m i n e d  t o  t h e  
a c c u r a c y  o f  c o e f f i c i e n t s  i n d e p e n d e n t  o f  y i n  t h e  o v e r l a p  d o m a i n s .  

I n  t h e  domain  6 a << y << 6,  f~ = f~ = K/2 f rom t h e  c o n j u g a t e  o f  t h e  a s y m p t o t i c  d e p e n -  
d e n c e s  (2) and ( 4 ) ,  and  t h e  v e l o c i t y  p r o f i l e  s h o u l d  h a v e  t h e  form [2 ,  5] 

<.§ > K 1/  = y  6>> u~ 

Here K is a universal constant (K z 4.2 according to [5]). 

Analogously, f3 (Y/~, ~) = /6a/y f4(Y/5~) = A in the domain 50 << Y <<: 5a, and 

(7) 

+ I <u + } = A l n y  n-B, 6~>>y>>6o. (8) 

Here  A = 2 .5  i s  a u n i v e r s a l  c o n s t a n t  [ 1 ] .  

F i n a l l y ,  i n  t h e  o v e r l a p  domain  5 v << y << 6e ,  i t  f o l l o w s  f rom t h e  r e l a t i o n s h i p s  (5)  and 
(6) that fa = f ,  = Ai(~) and 

- (  u + > ---- A2 (~) In g+ + Bi, 60 >> Y >> 6~. (9) 

The velocity profile is also sufficiently universal in the nearest neighborhood of a 
smooth wall y << 6v. If we limit ourselves to the first term of the shear stress expansion 
in the velocity gradient, then <T> = vd<u>/dy just as for a viscous fluid, and therefore 

< 4 + > = y + ,  6~>> g. (10) 

A p p r o x i m a t e  D e s c r i p t i o n  o f  t h e  V e l o c i t y  

A l t h o u g h  t h e  d i s t r i b u t i o n s  ( 7 ) - ( 1 0 )  found  a r e  v a l i d  o n l y  i n  t h e  a p p r o p r i a t e  s u b d o m a i n s ,  
we u s e  them f o r  an a p p r o x i m a t e  d e s c r i p t i o n  o f  t h e  mean v e l o c i t y  p r o f i l e s  i n  t h e  w h o l e  b o u n d -  
a r y  l a y e r  0 < y < 5. L e t  us  c o n s i d e r  a c o n t i n u o u s  d i s t r i b u t i o n  c o m p r i s e d  o f  t h e  s i m p l e  e x -  
p r e s s i o n s  ( 7 ) - ( 1 0 )  down t o  b o u n d a r y  p o i n t s  o f  t h e  a d j a c e n t  domains  A~ = c~6~,  A 0 = c~60,  
Aa = c35~,  a n d 6  ( c ~ ,  c2 ,  c3 a r e  n u m e r i c a l  f a c t o r s ,  w h e r e  c~ and c2 can g e n e r a l l y  depend  on 
~) : 

! A~(n) lny++Bz  , A + ~ g + ~ h ~ ,  
<u+}= i A l n y  + + B  , A + ~ Y + ~  A + ,  (II) 

I r + 
U, 

The greatest deviations of the real data from this model profile (shown schematically 
in the figure) can exist near the junctures. However, as a rule, the accuracy of predictions 
for low-concentration polymer solutions near the ~oint A+~ is not less than for the usual 
viscous fluid. The exact position of the point A~ is barely essential because of the close- 
ness of the logarithmic and root distributions. The error related to continuation of the 
root distribution down to the outer boundary 6 can be diminished by the introduction of an 
external sublayer (see below). 

The c o n d i t i o n s  B~ = ci--A~lnci, B = (A~--A) ln (c iO-~)  -k Bi, 

i /  ~6 4:t+B' u+=M+ l 4: (12) M - - - - K V c ~ + A l n  c3 ~v t 

s h o u l d  be  s a t i s f i e d  f o r  c o n t i n u i t y  o f  t h e  mean v e l o c i t y  p r o f i l e s  a t  t h e  p o i n t s  Av, Ae,  Aa,  6. 
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~ ~  Fig. l. Model representation of the 
2 mean velocity profile: i) <u+> = y+; 

2) <u+> = A=in y+ + Ba; 3) <u+> = 
AIn y+ + B; 4) <u+> = K#y+gv/u, + M. 

tnA~ tnA~ ln,~ Inj  u 

Taking account of the last relationship, the velocity profile can be written in the 
form of (3) in the outer boundary layer zone, where 

F -~v = K  i- ~- , y>A~.  (13) 

From ' ( 1 2 ) ,  t h e  l o g a r i t h m i c  f o r m l a  f o r  B i s  s i m p l i f i e d  i f  t h e  n a t u r a l  c o n d i t i o n s  f o r  
making  t h e  t r a n s i t i o n  to  t h e  c a s e  o f  a v i s c o u s  f l u i d  a r e  t a k e n .  L e t  us  a s sume  t h a t  as  A0+ 
k~ the distribution (ii) goes over into the appropriate distribution for a viscous fluid 
with B = Bo = 5.5, A z 2.5. Then 

ct .~ 11.6; Az m 2.5 + 0.5 a (:J, Bz .~ 5.5 - -  1,23 a (n), ( 1 4 )  

0 , U, < U,C r, 

B,~5.5"-F a ( n ) l n  u___~, , u , ~ U , c r .  
U,cr 

The q u a n t i t y  U ,c  r 2  - c x v / c 2 0  has  t h e  mean ing  o f  a c r i t i c a l  s t r e s s  a t  wh ich  t h e  s u b s t a n -  
t i a l  i n f l u e n c e  o f  t h e  p o l y m e r  on t h e  mean v e l o c i t y  p r o f i l e  s t a r t s .  Tn t e r m s  o f  i t  40 can be  
d e s c r i b e d :  

A + = 11.6 (u,/U,er) z, u, ~ U,er. (15) 

Fo rmula  (14) f o r  B was found  e m p i r i c a l l y  i n  [ 6 ] .  The q u a d r a t i c  d e p e n d e n c e  o f  A~ on u ,  
i s  s e e n  f rom t h e  e x p e r i m e n t a l  d a t a  i n  [ 7 ] .  L e t  us  n o t e  t h a t  t h i s  d e p e n d e n c e  would be  l i n e a r  
[4] u n d e r  an a d d i t i o n a l  p a r a m e t e r  o f  t h e  d i m e n s i o n a l i t y  o f  a l e n g t h .  

The magnitude of the coefficient a(~) can vary significantly. However, the requirement 
of no points of inflection on the velocity profile, associated with the condition of flow 
stability, imposes the constraint a(~) --< 18.2, which is equivalent to AI~ 11.6 or Bz 
- -16 .9  [4]. 

As the pressure gradient ~ diminishes, the logarithmic distribution gradually displaces 
2 " 

the root distribution to the outer boundary, and we finally obtain ~ = A~cr = c3u,/~cr, U + -- 
Aln(Su,/v) + B for some a = acr. Hence, for a minimum pressure gradient at which the sub- 
stantial influence of the pressure on the boundary layer starts, we have the formula 

~cr v Ca o .4a(n) (16) 
a-  = - 6  + - - 9 c a e x p ( - - O . 4 U  +) u ,  , u , > U , c r .  

u ,  [ k U,cr f 

This criterion turns out to be responsive to the presence of a polymer. 

The formulas for M and U + can be rewritten as follows for a ~ ~cr, u, ~ U,c r by using, 
the parameter acr: 

U + = d I n  5 + + K  - ~ g -  - - - - - 1  + B ,  
* ~cr 

B = a ( a )  l n (  u ,  ) + B o  
/ / -*or 

(17) 
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Hence, it is seen that within the framework of the model under consideration, the contribu- 
tion to U + from the influences of the polymer and the pressure gradient are additive. If u, 
or ~ turn out to be below the critical levels, then the influence of the polymer or the pres- 
sure gradient on the boundary layer vanishes and the corresponding members drop out of the 
formulas. 

2 2 By introducing the local friction coefficient cf = 2u~/U and the Reynolds number Re = 
U6/~, the formula for U ~ can be rewritten in the form of a "drag law" for A ~ 2.5; Bo ~ 5.5; 
K = 4.2: 

( v -5.5+2.5 n ROl/y +4.2 |/ uW 

U 3 ] + a (~) In i ~ | / f  + 2.5 In ~ 2 ~ ~ %r. ~ r / ' c f  ~ '  

We o b t a i n  an  e s t i m a t e  of  t h e  maximum i n f l u e n c e  o f  t he  po lymer  on the  b o u n d a r y  l a y e r  
f rom the  c o n d i t i o n  t h a t  t he  t h i c k n e s s  o f  t he  po lymer  zone  AO becomes a s g r e a t  as p o s s i b l e ,  
w h i l e  t h e  s l o p e  o f  t he  p r o f i l e  i n  t h i s  zone r e a c h e s  i t s  l i m i t  w i t h  a (~ )  = 1 8 . 2 .  I f  i t  i s  
assumed t h a t  t he  po lymer  e x e r t s  no i n f l u e n c e  on t he  p r e s s u r e  zone  (y > A~),.  as on t he  " o u t e r  
z o n e , "  t h e n  t h e  l i m i t  c o n d i t i o n  w i l l  be when AO r e a c h e s  A~ and t he  v e l o c i t y  p r o f i l e  c o r r e -  
s p o n d i n g  to  t h e  " l i m i t  a s y m p t o t e "  c o n d i t i o n s  w i l l  be 

Y+ , O ~ < y + ~  11.6, 
11.61ny + -  16.9, 11,6~<u+~<,a+, 

( u + > = 1 /  - - ~ . .  + (19) 
K t / - - ~ - , 3  y q-A4, A+~<y+~<6 +. 

The polymer generally ceases to influence the velocity profile when A + reaches the value 
11.6 for a significant pressure gradient, and therefore, does not influence the turbulent 

3 
flow drag. This occurs for ~ = ~o - c~u,/ll.6~. 

The requirement of no inflection points on the velocity profile at the point y -- A~ re- 
sults in the constraint K#~ 2A z 5, where the equality sign corresponds to the case of a 
smooth passage from the logarithmic to the root law. The experimental results indicate that 
almost this case is realized [2, 5].* For K = 4.2 we obtain the estimate c3 = 1.4((compare 
with [5]). The error associated with continuation of the root distribution to the outer 
boundary layer boundary can be diminished by insertion of an outer sublayer. For an insig- 
nificant pressure gradient in a viscous fluid, the velocity profile in such a sublayer devi- 
ates from the logarithmic and is described well by a velocity defect law (3) with v = u, and 
with the empirical function F(y/~) = 9.6 (i- y/6) 2, if y > 0.158 (see [i]). 

The same distribution satisfactorily describes the outer sublayer even in the presence 
of a pressure gradient [2] (then v = ~). In the subdomain A~ y~ 01158 in which the 
"velocity defect law" is also valid, F(y/8) = M~ -- K#y/8, where M1 = 8.6 z 2K because of the 
continuity of the velocity distribution. On the other hand, a representation in the form of 
(ii) is allowable in the zone of influence of. the pressure gradient. Compatibility of these 
two formulas is observed if U + = M + M ~ .  In the case under consideration such a rela- 
tionship replaces the last formula Sn (12) that will result in only moderate changes in the 
numerical coefficient in the drag formula. It is also easy to trace other changes inducedby 
taking account of an outer sublayer. 

NO TAT I ON 

U, external flow velocity; u,, dynamic velocity; ~, kinematic velocity coefficient; 
6, boundary layer thickness; 6~ = ~/u,, viscous sublayer thickness scale; x, coordinate 

2 
along the surface in the flow direction; e= dp/dx, pressure gradient; p, pressure; 6~ = u,/~, 
a length scale characterizing the influence subdomain of the pressure gradient; e, relaxa- 
tion time of the polymer solution; 60 = eu,, length scale characterizing the subdomain of 
inertial-elastic influence of the polymer; ~, a dimensionless parameter characterizing the 
polymer solution; y, coordinate normal to the surface; F, ~i (i = i, 2, 3, 4), dimension- 
less functions of dimensionless variables; <u>, mean velocity; v, a parameter of the dimen- 
sionality of a velocity in the velocity defect law;, Re, Reynolds number; u + = u/u,, y+ = 

*This is indeed conceivable from general considerations since preseparation flow with a low 

stability margin is considered. 
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yu,/~, 6 + = au,l , u + = u/u,, 0 + : eu l , A~ = A~u,/~, A~ = Aeu,/~, A~ : A u,l , dimension- 
less quantities in the near-wall variables; A, K, Bo, universal constants in the logarithmic 
and root-mean velocity distributions; cl, c2, c3, numerical coefficients; U,cr, stress at 
which the influence of the polymer on the mean velocity profile starts; a(~), parameter 
characterizing the influence of the polymer; ~cr, minimal pressure gradient at which the in- 
fluence of the pressure on the boundary layer starts; cf, local friction coefficient. 
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HEAT EXCHANGE DURING FLOW OF ANOMALOUSLY VISCOUS FLUIDS IN 

CYLINDRICAL CHANNELS OF SIMPLY CONNECTED CROSS SECTION 

Yu. G. Nazmeev, L. I. Feifer, 
A. M. Yurist, and K. D. Vachagin 

UDC 532. 517.2 

A method is proposed and results of a numerical solution are presented for a 
problem of heat exchange on the initial section of cylindrical channels of sim- 
ply connected cross section during steady-state flow of an anomalously viscous 
fluid. 

A theoretical investigation of heat exchange during flow of an anomalously viscous fluid 
in cylindrical channels of simply connected cross section has great applied importance. 

A considerable number of studies [i, 2] have been devoted to questions of the heat ex- 
change of anomalously viscous media for their flow in prismatic simply connected channels. 
However, in connection with the fact that the treatment of the given question encounters 
large mathematical difficulties, the known studies have either been of an experimental na- 
ture or have been devoted to a consideration of particular cases (a "power" rheological law, 
flow in channels of simplest forms, etc.). A fundamental obstacle for calculating the heat 
exchange in prismatic channels is the absence of analytical methods of determining the veloc- 
ity profile in an anomalously viscous medium. 

The aim of the present study is to solve the problem of heat exchange on the initial 
section of a cylindrical simply connected channel for flow of an anomalously viscous fluid 
described by an arbitrary rheological law for the case of boundary conditions of the first 
kind. 

Considering laminar steady-state flowof an anomalously viscous fluid in a prismatic chan- 
nel for the condition that heat transfer owing to heat conduction along the axis of the chan- 
nel is incommensurably small in comparison with the forced transfer and dissipative release 
of heat is insignificant, the problem can be formulated in the following way: 

(I) 
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